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Abstract

We extend the adversarial/non-stochastic multi-play multi-armed bandit (MPMAB) to the case
where the number of arms to play is variable. The work is motivated by the fact that the resources
allocated to scan different critical locations in an interconnected transportation system change dy-
namically depending on time and environment. By modeling the malicious hacker and the intrusion
monitoring system as the attacker and the defender, respectively, we formulate the problem for the
two players as a sequential evasion-and-pursuit game. We derive the condition under which a Nash
equilibrium of the strategic game exists. For the defender side, we provide an exponential-weighted
based algorithm, which is shown to have sublinear pseudo-regret. We further extend our model
to heterogeneous rewards for both players, and obtain lower and upper bounds on the average
reward for the attacker. We provide numerical experiments to demonstrate the effectiveness of a
variable-arm play.

Keywords: adversarial bandit, cyber security, evasion-and-pursuit game, online learning,
intelligent transportation systems (ITS), multi-armed bandit (MAB)

1. Introduction

Currently, the world is experiencing an evolution from the traditional transportation system
to the next generation of intelligent transportation systems (ITS). ITS aims to satisfy the ever-
increasing need for mobility in major cities, which has caused growing traffic congestion, air pollu-
tion, poor user experience and accidents. Developing a sustainable intelligent transportation system
requires better usage of existing infrastructures and their seamless integration with information and
communication technologies (ICT). Enabled by the recent findings in the areas of telecommuni-
cations, electronics, and computing capabilities as well as the increasing traffic in recent decades,
the subsystems (infrastructures and vehicles) in ITS are expected to interoperate and communicate
with each other, in order to provide a better and safer traveling experience [1].

The interconnection between the infrastructures and the vehicles relies on various types of
sensors to provide state information and situational awareness. However, this has also increased
the vulnerability of these advanced systems to cyber attacks. For instance, recently there have
been demonstrated cyber attacks on vehicle sensors in [2, 3], where the authors used optimization-
based approaches to fool the light detection and Ranging (LiDAR) sensors on the vehicle. At
the system level, the infrastructures and the vehicles can be viewed as individual nodes in a large
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interconnected network, where a single malicious attack on a subset of sensors of one node can
easily propagate through this network, affecting other network components (e.g., other vehicles,
traffic control devices, etc.). For example, Feng et al. [4] demonstrated that by sending falsified
data to actuated and adaptive signal control systems, a malicious hacker could increase the total
system delay evaluated in a real-world corridor. Therefore, there is an increasing demand for cyber
security solutions, especially for sensor security solutions, to enhance the safety and reliability of
the entire system.

Cyber security is an extremely broad topic. However, previous work on cyber security in the
realm of ITS are mainly limited on either the attack or the defense side. For instance, there exists
a large body of research illustrating the potential risks of connected and automated vehicle (CAV)
technologies resulting in anomalous/false information [5, 6, 7, 8]. In case of CAV sensor security,
several critical sensors are illustrated in [9], including differential global positioning systems (GPS),
inertial measurement units, engine control sensors, tyre-pressure monitor systems (TPMS), LiDAR,
and camera. Meanwhile CAVs require more engine control units (ECUs) and many features of
CAVs require the complex interaction between multiple ECUs, which may potentially expose more
vulnerabilities compared to non-CAVs. There also exists several studies accessing the potential
threats on the transportation infrastructure [4, 10, 11]; for example, field devices such as traffic
signals and roadside units are susceptible to tampering. The aforementioned literature illustrates
the potential threats of sensors to connected transportation systems. Besides threat detection,
prevention is normally recognized as one of the best defense strategies against malicious hackers or
attackers. In order to deploy better prevention mechanisms, behaviors of both the attacker and the
defender have to be considered so that the attack profile can be predicted. Unfortunately, there is
a gap in the literature in considering both the attacker and defender and the interactions between
them when devising defense strategies, which this paper aims to bridge.

Moreover, as more sensors are mounted aboard CAVs or installed on the transportation in-
frastructure, it becomes more difficult to monitor the sensors continuously, mainly due to lim-
ited resource. Although there is a large body of literature addressing sensor security in ITS
[12, 13, 14, 15, 16], most of them mainly focus on sensor intrusion/anomaly detection without
attack profile analysis, which considers which sensor is more vulnerable and should be protected.
In this study, we address this by modeling attacker and defender behaviors in a game theoretical
framework. Specifically, instead of considering intrusion/anomaly detection for all sensors in the
system, we model attack and defense behaviors in order to predict which subset of sensors are more
likely to be compromised. To be more practical, we consider a dynamic resource constraint for the
defender. We model this problem as a sequential evasion-and-pursuit game between two players.
Consider the intrusion monitoring system of a sensor network as the defender. At each time, the
defender selects a subset of sensors to scan, while the number of selected sensors changes based on
the environment and scanning history, among other factors. Meanwhile, a hacker, considered as the
attacker, attempts to select a sensor to compromise without being scanned by the defender. We
assume both the attacker and the defender are able to learn their opponent’s behavior adaptively
and with only partial information over time, and investigate the the resulting decision problem.

The main contributions of this work are as follows: First, in order to predict the attack profile,
we model the behaviors of the attacker and the defender as the adversarial (or non-stochastic) multi-
armed bandit (MAB) problem and the multi-armed bandit problem with variable plays (MAB-VP),
where the two players are playing a constant-sum game against each other. To the best of our
knowledge, this is the first study of MAB-VP in the non-stochastic setting. Second, we derive
conditions under which a Nash equilibrium of the strategic game exists. For the defender side, we
provide an exponential-weighted based algorithm, which is shown to have sublinear pseudo-regret.
Finally, we consider a more realistic setting when the rewards are heterogeneous among different
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sensors, and derive lower and the upper bounds for the attacker’s average reward.

2. Literature Review

In this paper, we employ online learning algorithms in the class of adversarial or non-stochastic
multi-armed bandit (MAB) problems. The adversarial MAB problem was first addressed by Auer
et al. [17], where they also proposed the well-known exponential-weight algorithm for exploration
and exploitation (Exp3). Exp3 runs the Hedge algorithm, which is originally proposed by Freund
and Schapire [18] as a generalization of littlestone and Warmuth’s Weighted Majority algorithm
[19] as a subroutine. Since then, there have been several extensions to this class including the
online shortest path problem [20], routing games [21], bandit online linear optimization [22] and
combinatorial bandits [23].

There is another research direction of MAB, i.e. multi-play multi-armed bandit (MPMAB)
problem. In this extension, a fixed number of resources are allocated at each time step. The
MPMAB has attracted a lot of interest and several studies have been conducted along this direc-
tion [24, 25, 26, 27]. However, most of the studies only focus on a stochastic setting. There is
much less work done in the field of adversarial MPMAB problem: Cesa-Bianchi and Lugosi [23]
considered combinatorial bandits in the adversarial setting, where they proposed the ComBand

algorithm. This algorithm has a sublinear regret in O
(
M

3
2N
√
TN lnN

)
, with time and space

complexities of O
(
MN3

)
and O

(
K3
)
, respectively, where M is the number of resources (or arms

selected) at each time, T is the number of iterations, and N is the number of possible actions.
Following this work, Uchiya et al. [28] proposed the extension of Exp3, namely Exp3.M, which

runs in O (N(logM + 1)) time and O(N) space, and suffers at most O
(√

MTN log (N/M)
)

re-

gret. However, the aforementioned algorithms only consider a fixed number of arms to be played
at each time.

Only a limited number of studies have considered variable plays. Fouché et al. [29] proposed
a scaling algorithm combined with a MAB algorithm , which they call the S-MAB algorithm. In
this algorithm, the number of arms played at each time changes in order to satisfy an efficiency
constraint. However, although the authors considered a dynamic environment, the S-MAB algo-
rithm uses a stochastic setting, where they assume an unknown distribution of reward for each arm.
Another work addressing the variable plays problem was done by Lesage-Landry and Taylor [30],
where they extended the stochastic MAB to stochastic plays setting, i.e. the number of arms to
play evolves as a stationary process. Both these studies only considered a stochastic setting, and
did not conduct any game strategy analysis. Since the behavior of the adversarial opponent usually
cannot be described in a stochastic way, in the rest of the paper, we study the MAB-VP problem
in a non-stochastic setting, where we propose the Exp3.M with variable plays (Exp3.M-VP) algo-
rithm. Next, we consider a game setting for two players, and show that a Nash equilibrium of the
strategic game exists. Finally, we consider heterogeneous rewards for both players and derive lower
and upper bounds for the attacker’s average reward. Numerical analyses are conducted in order to
further demonstrate our results.

3. System Model and Problem Formulation

3.1. System Model

Consider the repeated evasion-and-pursuit game between an attacker and a defender in dis-
crete time. At each time step t, the attacker selects one of the N locations, indexed by the set
N = {1, 2, ..., N}, to hide in (e.g., compromise a sensor), while the defender searches Mt locations
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simultaneously, where a ≤ Mt ≤ b. The behaviors of the attacker and the defender are described
by their respective set of marginal probabilities α(t) = (αk(t))k∈N and β(t) = (βk(t))k∈N , where
αk(t) and βk(t) are the respective probabilities that the k-th location is chosen by the attacker and
the defender at time t. Note that α(t) and β(t) represent the adversarial behavior with respect
to one’s opponent at time t, where they can describe randomized strategies of the players, or a
probabilistic belief held by one side about the likelihood of an action by the other side.

Define two sets of binary variables xk(t) and yk(t) such that xk(t) = 1 if the defender does
not search location k at time t, and xk(t) = 0 otherwise. Similarly, yk(t) = 1 if the attacker
compromises the location k at time t, and yk(t) = 0 otherwise. When the attacker (or defender)
does not know the type of algorithm/strategy the opponent uses, it may regard the xk(t) (or
yk(t)) as a predetermined but unknown number. When the attacker (or defender) does have this
information, it may regard the xk(t) (or yk(t)) as a random variable where P (xk(t) = 0) = βk(t)
(resp. P (yk(t) = 1) = αk(t)). The game is played in a sequence of trials t = 1, 2, ..., T . In this
work we consider the case that neither the attacker nor the defender knows the strategy adopted
by the other player. As will be discussed later, they have to choose the location based on the their
history rewards.

Table 1: Table of Notation

αk(t)/βk(t) , marginal probability that the attacker compromises/the de-
fender scans location k at time t

xk(t)/yk(t) , indicator variable of whether the defender/attacker selects
the location k at time t

It/Jt , index of the locations where the attacker compromises/the
defender scans at time t

Mt , number of locations scanned by the defender at time t

a/b , lower/upper bound of Mt

r(t)/s(t) , single step reward of the attacker/defender

ω(t)/θ(t) , private randomization device of the attacker/defender

πt/γt , control policy of the attacker/defender

T , finite time horizon

N , total number of locations

N , index set of N locations

C , index set of arbitrary locations

3.2. Problem Formulation: Partial Information Game

In this study we consider the scenario where both players have limited information on the
adaptive behavior of the opponent. Define π = (πt, t = 1, 2, ...) as the control policy of the
attacker, and Π denotes the policy space. Denote the location selection (action) sequence as
I = (It, t = 1, 2, ...) under policy π and |It| = 1. At each time and under policy πt, the attacker
chooses one location It ∈ N to attack, i.e.

It = πt

(
x

[t−1]
I , I [t−1], ω(t)

)
, (1)
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where x
[t−1]
I := (xI1(1), ..., xIt−1(t − 1)), and I [t−1] is similarly defined. (ω(t), t = 1, 2, ...) denotes

the randomized strategy of the attacker. Let xk(t) be the state of location k for the attacker at
time t. Then the attacker scores the corresponding reward rI(t) = xIt(t). The attacker observes
only the reward rI(t) for the chosen action It.

The attacker receives an expected reward E[rI(t)] = 1 − βIt(t) at time t, which is the mean
number of successful attacks at the chosen location. Note that in this section we consider a ho-
mogeneous reward across all locations; however, heterogeneous location-dependent rewards are
considered in section 7. In this study, we assume 100% success rate for both the attacks and the
detection attempts. Then, within the time window {t, t = 1, 2, ..., T}, the attacker considers the
following maximization problems,

maximize
π∈Π,It∈N

E

{
T∑
t=1

xIt(t)

}
, (2)

where the expectation is with respect to the randomness of the system state and the mixed-strategy
of the attacker.

We assume that the defender can scan Mt locations at time t. Define γ = (γt, t = 1, 2, ...) as the
control policy of the defender, and let Γ denote the defender’s policy space. Denote the location
selection (action) sequence as J = (Jt, t = 1, 2, ...) under policy γ. At each time and under policy
γt, the defender scans Mt locations, denoted as set Jt ⊂ N and |Jt| = Mt, based on the history
search and rewards, i.e.,

Jt = γt

(
y

[t−1]
J , J [t−1],Mt, θ(t)

)
, (3)

where y
[t−1]
J := (yJ1(1), ..., yJt−1(t− 1)) with J [t−1] similarly defined, and (θ(t), t = 1, 2, ...) denotes

the randomized strategy of the defender. Let yk(t) be the state of location k for the defender at
time t. The defender also observes only the rewards

∑
j∈Jt yj(t) of the chosen action Jt. Denote the

total rewards at time t of the defender given location selection sequence J as sJ(t) =
∑

j∈Jt yj(t).
We assume the number of arms Mt the defender plays at each time is determined by a scaling

function, i.e. f : RN+1 −→ {a, a + 1, ..., b}, of d-moving average of the rewards of each arm, where
a and b are integer, and 1 ≤ a ≤ b < N . Meanwhile we also assume Mt is a function of the
environment constraint Lt, since in reality checking a location (e.g., scanning a specific sensor/unit
in a CAV) may consume resources. Then, given the time horizon T , the defender is trying to solve
the following constrained optimization problem:

maximize
γ∈Γ,Jt⊂N

E


T∑
t=1

∑
j∈Jt

yj(t)

 (4a)

s.t. Mt = f(ŷd(t), Lt) (4b)

|Jt| = Mt (4c)

where ŷd(t) = {ŷd1(t), ŷd2(t), ..., ŷdN (t)}, and ŷdi is the d-moving average of the rewards of each arm
i. Using a moving average of reward can allow us to capture the history reward while at the mean
time capturing the dynamic change of the reward for each location, allowing the scaling function to
adjust the number of arms to play each time. The expectation is with respect to the randomness
of the system state and the mixed strategy of the defender. Note that there is no requirement for
the scaling function f , other than it needs to be bounded by integers a and b. Furthermore, Lt can
be an arbitrary integer between a and b, thereby capturing any set of environmental conditions.
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When the defender knows the type of strategy the attacker uses, it may regard yJj (t) as stochas-

tic, i.e. assuming the attacker chooses location j with probability P (yJj = 1) = αj(t). Note that
this is different from the stochastic MAB setting where a fixed (time-invariant) distribution of
rewards for each arm is assumed. However, here we do not assume neither the defender nor the
attacker have information about their opponent’s strategy. Hence, the difficulty is that the de-
fender can only estimate αj(t) by imposing an arbitrary belief on the adversarial behavior based
on previous observations and rewards. Furthermore, here, we do not make any assumptions about
the distribution of αj(t).

Algorithm 1 Exp3.M-VP

1: Parameter: η ∈ (0, 1]
2: Initialization: wi(1) = 1 for i = 1, 2, ..., N
3: for t = 1, 2, ..., T do
4: Receive the number of arms to play at each round Mt.

5: if maxj∈N wj(t) ≥
(

1
Mt
− η

N

)∑N
i=1 wi(t)/(1− η) then

6: Decide κt such that

κt∑
wi(t)≥κt

κt +
∑
wi(t)<κt

wi(t)
=

(
1

Mt
− η

N

)
/(1− η).

Set S0(t) = {i : wi(t) ≥ κt}.
Set w′i(t) = κt,∀i ∈ S0(t).

7: else
8: Set S0(t) = ∅.
9: end if

10: Set w′i(t) = wi(t),∀i ∈ Sc0(t).

11: Set α̂i(t) = Mt

(
(1− η)

w′
i(t)∑N

j=1 w
′
J (t)

+ η
N

)
.

12: Set Jt = DepRound(Mt, (α̂1, α̂2, ..., α̂N )).
13: Observe rewards yi(t) ∈ [0, 1] for i ∈ Jt.
14: for i = 1, 2, ..., N do
15:

ŷi(t) =

{
yi(t)/α̂i(t) if i ∈ Jt,
0 otherwise.

wi(t+ 1) =

{
wi(t) exp(Mt η ŷi(t)/N) if i ∈ Sc0(t),

wi(t) otherwise.

16: end for
17: end for

4. Algorithms for the Attacker and the Defender

We assume the attacker adopts the Exp3 algorithm proposed by Auer et al [17]. The Exp3
algorithm uses an efficient and randomized policy to select only one arm at each time t. The
adversarial single play bandit problem is closely related to the problem of learning to play an
unknown repeated matrix game. In this setting, a player without prior knowledge of the game
matrix is to play the game repeatedly against an adversary with complete knowledge of the game
and unbounded computational power. The basic idea of Exp3 is that at each time the player uses
a randomized policy such that the adversarial player cannot know the exact choice of the player
before she/he plays. For the details of Exp3, refer to the Appendix A.
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Unlike the attacker who selects a single location to attack, we assume the defender can search
multiple number of locations, which may vary at each time. Both sides seek to maximize their
respective total rewards. At the beginning of a time step, each side needs to decide which location(s)
to target, and cannot change their selection until the next time step. We develop a variable-
play extension of the Exp3.M algorithm for the defender, which we call Exp3.M-VP, as shown
in Algorithm 1. In the Exp3.M-VP algorithm, let S denote the set of selected locations, and let
Sc define its complement set. Under the non-stochastic assumption and at each time step, the
Exp3.M-VP algorithm consists of the following two procedures:

1. Receive Mt, which is determined by the scaling function f could be based on the environment
constraint Lt and the history rewards ŷd(t) at time t, among other factors. Note that function
f can take any form, and defining its exact form is outside the scope of this paper. Here, we
assume Mt is provided.

2. Apply an adversarial MPMAB algorithm which selects Mt arms (locations) to play.

For the second procedure, we use our proposed variable-play extension of Exp3.M algorithm.
The Exp3.M is proposed by Uchiya et al. [28] and is an extension of the algorithm Exp3 for the
adversarial MPMAB setting. In contrast to the Exp3 algorithm which selects one arm at each
time, Exp3.M randomly selects a fixed number of M arms at each time. Note that both Exp3
and Exp3.M suffer from sublinear (weak) regret, or no-regret. In order to make sure that the
probability of selecting location i by DepRound at step 12, i.e. α̂i(t), does not exceed 1, the

Exp3.M-VP algorithm checks whether all wj(t)’s are less than
(

1
Mt
− η

N

)∑N
i=1

wi(t)
(1−η) at step 5.

If that is the case, α̂i(t) calculated at step 11 will be less than 1 for all i = 1, 2, ..., N without
any weight modification, and the set S0(t) is set to ∅ at step 8. Otherwise, all the actions i with
wi(t) ≥ κt are classified into S0(t) and set to κt at step 6. In this way, we have α̂i(t) = 1 for all
i ∈ S0(t). The subroutine DepRound [31] at step 12 draws Mt out of N items with the specified
marginal distribution (α̂1, α̂2, ..., α̂N ), and is included in the Appendix B.

5. Adaptive Learning of the Defender

In this section, we address the adaptive learning of the defender. Based on Algorithm 1 for the
defender, the problem (4) can be recast by removing the constraint set, since we divide the problem
to a scaling procedure and the MAB-VP. Formally, let y(t) := (yk(t),∀k ∈ N ) for t = 1, ..., T over a
finite horizon T . For any search sequence of the defender J = (Jt, t = 1, 2, ...) and a fixed sequence
of attacks by the attacker (y(1), y(2), ...), the total reward of the defender at T , denoted by GJ(T ),
is given by

GJ(T ) =

T∑
t=1

∑
j∈Jt

yj(t). (5)

Here, we obtain the maximum reward by consistently searching the subset AMt , which is the
most attacker-active location set at each time step t with cardinality Mt:

Gmax(T ) = max
AMt

T∑
t=1

∑
k∈AMt

yk(t). (6)

Let us define A = ∪MtAMt . Note that if Mt ∈ {a, a + 1, ..., b}, the location index subset AMt is
defined such that Aa ⊂ Aa+1 ⊂ ... ⊂ Ab = A.
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The regret is then defined as

R(T ) = Gmax(T )−GJ(T ). (7)

When a = b, i.e. Mt is time-invariant, the above regret reduces to the standard regret of MPMAB
problem.

Since we care more about the competition against the optimal action in expectation, we define
the pseudo-regret for our MAB-VP problem following the definition of pseudo-regret in [32] as:

R̄(T ) = Gmax(T )− E[GJ(T )], (8)

where the expectation is with respect to the randomness of system state and mixed-strategy of the
defender.

Theorem 5.1. For any N > 0 and for any η ∈ (0, 1], if Mt is lower bounded and upper bounded
by two positive integers a and b respectively, then

R̄Exp3.M-VP(T ) = Gmax(T )− E[GJExp3.M-VP(T )] ≤
(

1 +
(e− 2)b

a

)
ηGmax(T ) +

N

η
ln
N

b

holds for any assignment of rewards and for any T > 0.

Proof of Theorem 5.1: . See Appendix C. �
By appropriately choosing the parameter η, we can obtain the following corollary:

Corollary 5.1.1. Set η = min
{

1,
√

Na ln(N/b)
(a+(e−2)b)bT

}
. Then

R̄Exp3.M-VP(T ) ≤ 2

√(
1 + (e− 2)

b

a

)√
bTN ln

N

b

holds for any T > 0 and for any assignment of rewards.

The proof of Corollary 5.1.1 is the same as that of Corollary 3.2 in [33]. Note that when a = b
the upper bound in Corollary 5.1.1 is same as the upper bound of Exp3.M derived in [28], and
when a = b = 1 the upper bound becomes the same one of Exp3 in [17].

Corollary 5.1.2. Define s̄∞ := lim inf
T→∞

E
[

1
T

∑T
t=1 s

J(t)
]

as the average reward of the defender over

infinite time horizon. Using the same parameter η as in Corollary 5.1.1, when the defender uses
the Exp3.M-VP algorithm against the attacker who adopts a no-regret algorithm, we have s̄∞ = ν

N
if Mt is a wide sense stationary process with mean ν.

In order to prove the Corollary 5.1.2, we need the following lemma which was originally derived
in [34].

Lemma 5.2. When the defender (pursuer) is adopting Exp3.M algorithm and the attacker (evader)
does not know the type of algorithm used by the adversarial opponent, then v = 1

N , where v is the
game value of the repeated constant-sum game for the defender.
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Proof of Corollary 5.1.2: . The above problem is equivalent to the problem of two players playing
an unknown repeated bimatrix game, where the game value vi,t (i = 1, 2 for the row and column
player respectively) is changing over time t. Define the game matrices as two N × N matrices B
and C, where Bij +Cij = 1 for any (i, j) ∈ {1, 2, ..., N}2. At each time t, the defender (i.e., the row
player) chooses Jt rows of the matrix, and at the same time, the attacker (i.e., the column player)
chooses exactly one column It = k. The defender then receives the payoff

∑
j∈Jt Bjk =

∑
j∈Jt yj(t).

The defender uses a mixed strategy pt at each time t, where pt ∈ [0, 1]N , and the attacker chooses
according to a probability vector qt ∈ [0, 1]N . Note that the sum of pt equals to Mt and the sum
of qt equals to 1. Let v1,t be the game value of the game matrix B at time t. Then by Corollary
5.1.1, we have

E

 T∑
t=1

∑
j∈Jt

Bjk

 = E

 T∑
t=1

∑
j∈Jt

yj(t)

 (9a)

≥ Gmax(T )− 2

√(
1 + (e− 2)

b

a

)√
bTN ln

N

b
. (9b)

Let pt be such that v1,t = maxpt minqt p
T
t Bqt = minqt maxpt p

T
t Bqt. Then we have

Gmax(T ) ≥
T∑
t=1

N∑
i=1

pt,iyi(t) (10a)

=
T∑
t=1

pTt y(t) (10b)

=
T∑
t=1

pTt Bqt ≥
T∑
t=1

v1,t (10c)

where qt is a distribution vector whose It-th component is 1.
Combining (9) and (10), we have

E

[
1

T

T∑
t=1

sJ(t)

]
≥ 1

T

T∑
t=1

v1,t − 2

√(
1 + (e− 2)

b

a

)√
bN ln

N

b
/T . (11)

Note that at each time t, v1,t = Mtv1, where v1 is the game value when the defender only
chooses one location. Hence, taking the limit of (11) and according to the law of large numbers we
have

s̄∞ = lim inf
T→∞

1

T

T∑
t=1

v1,t = νv1, (12)

where the first equality comes from the fact that the attacker is also adopting a no-regret algorithm
(e.g. Exp3). Finally, according to Lemma 5.2, we obtain the result.

�

Corollary 5.2.1. Under the setting that the defender adopts Exp3.M-VP and the attacker adopts
a no-regret algorithm, and Mt is a wide sense stationary process with mean ν, each player adopts
the best response with respect to the others for the infinite-horizon problem.
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The proof can be obtained by extending the proof of defender side in Corollary 5.1.2 to both
sides, and is omitted for brevity. Notice that in Corollary 5.1.2 and Corollary 5.2.1 we do not
specify which type of learning algorithm the attacker is using, and the only assumption is that the
attacker adopts a no-regret algorithm.

6. Adaptive Learning of the Attacker

We assume that the attacker adopts the Exp3 algorithm to randomly attack one location at
each time step. The Exp3 algorithm runs the algorithm Hedge as a subroutine. Unlike the Hedge
algorithm which directly takes advantage of the full information of the reward vector x(t) :=
{xi(t),∀i ∈ N}, Exp3 observes partial information and feeds simulated reward vector x̂(t) :=
{x̂i(t),∀i ∈ N} to the Hedge. The Hedge will then update β̂i(t) which is the prediction of probability
βi(t) for i ∈ N . For more details about the Exp3 and Hedge algorithm, see Appendix A.

The defender adopts the Exp3.M-VP algorithm, which has a sublinear regret, as shown in
Theorem 5.1. As a result, if the attacker favors one location, intuitively the defender will eventually
identify this most attractive location, and fails to scan it only at a rate no more than sublinear
in T . When Mt is a time-invariant constant, it follows immediately that the best strategy for the
attacker over an infinite time horizon is to treat each location equally, either in a stochastic or
deterministic way. However, when Mt is a variable, the same argument cannot be trivially made.

Theorem 6.1. Define r̄∞ := lim inf
T→∞

E
[

1
T

∑T
t=1 r

I(t)
]
, and let the location sequence g be the se-

quence of the greedy policy πgreedy, where g(t) = arg mini∈N β̂i(t) for all t. If Mt is bounded by two
positive integers a, b such that Mt ∈ {a, a+ 1, ..., b}, then under any policy π we have:

r̄∞ ≤
N − a
N

,

and under the greedy policy πgreedy,

r̄∞ ≥
N − b
N

.

Proof of Theorem 6.1: . See Appendix D. �
Note that by Corollary 5.1.2, we can directly obtain the following result,

Corollary 6.1.1. Under the setting that the defender adopts Exp3.M-VP and the attacker adopts
Exp3, and Mt is a wide sense stationary process with mean ν, we have r̄∞ = N−ν

N .

Moreover, when Mt is a wide sense stationary process, following the proof of Theorem 6.1, it is
not hard to show that even the greedy policy can obtain r̄∞ = N−ν

N . Note that the above argument
does not require Exp3.M-VP to have any property other than a no-regret guarantee, and therefore
the greedy policy for the attacker can be a countermeasure against the entire family of no-regret
algorithms. For the defender part, according to Corollaries 5.1.2 and 6.1.1, a straightforward path
to increase the average reward in an infinite time horizon is to increase the value of ν, i.e. assign
more resources to the intrusion monitoring system.

7. Adaptive Adversarial Learning with Heterogeneous Rewards

In this section we consider heterogeneous rewards that are location-dependent. This corresponds
to a more general setting when the rewards change based on the location, since in reality some
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locations (e.g. sensors) are more critical to the system than others. Let µk be the location-
dependent reward corresponding to the k-th location. That is, the rewards of the attacker and the
defender are rI(t) = µItxIt(t) and sJ(t) =

∑
j∈Jt µjyj(t), respectively. Without loss of generality,

we assume that µ1 ≥ µ2 ≥ ... ≥ µN . We denote the frequency of location k being selected given
the selection sequence I as dIk(T ) over a time horizon T , i.e.,

1

T

T∑
t=1

µIt =
1

T

N∑
k=1

cIk(T )µk =

N∑
k=1

dIk(T )µk (13)

where cIk(T ) = | {t ≤ T : It = k} | and dIk(T ) = cIk(T )/T . Note that cIk(T ) is the total number of
times location k is selected by the attacker over horizon T given the selection sequence I.

Since the problem is no longer a constant-sum game under the setting of heterogeneous rewards,
Corollaries 5.2.1 and 6.1.1 cannot be directly applied. However, we can still show that when the
reward for each location is heterogeneous, the average reward r̄∞ in infinite time horizon is bounded
within an interval determined by a, b, and µk, k = 1, 2, ..., N .

Theorem 7.1. Given heterogeneous rewards, the average reward of the attacker r̄∞ over an infinite

time horizon is bounded within the interval

[
K∗−b∑K∗
k=1 µk

, K∗−a∑K∗
k=1 µk

]
, where K∗ is a constant determined

by µk values such that b ≤ K∗ ≤ N .

In order to prove Theorem 7.1, we need Lemmas 7.2 and 7.3, as follows. Let supp(d) = {k ∈
N : d > 0} for any feasible solution d, and let K∗ be the cardinality of supp(d). Then we have the
following lemmas:

Lemma 7.2. For any optimal solution d∗ of problem (17), 1) µkd
∗
k = µjd

∗
j for any k, j ∈ supp(d∗),

and 2) supp(d∗) consists of the indices of locations with the K∗ highest µ.

Lemma 7.3. Problem (22) is lower bounded by K∗−b∑K∗
k=1 µk

.

The proofs of Lemmas 7.2 and 7.3 can be found in the Appendices E and F, respectively.
Now we shall give the proof of Theorem 7.1 as follows,

Proof of Theorem 7.1: . The average reward of the defender when using Exp3.M-VP is given by

E[GJExp3.M-VP(T )] = E

 T∑
t=1

∑
j∈Jt

µjyj(t)

 (14a)

=

T∑
t=1

N∑
k=1

µkyk(t)βk(t) (14b)

=
T∑
t=1

µItβIt(t) (14c)

=
T∑
t=1

µIt − E

[
T∑
t=1

rI(t)

]
(14d)

for any realization I.

11



Then we have

1

T
E

[
T∑
t=1

rI(t)

]
=

1

T

T∑
t=1

µIt −
1

T
E[GJExp3.M-VP(T )] (15a)

≤
N∑
k=1

µkd
I
k(T )− 1

T

(
Gmax(T )− 2

√(
1 + (e− 2)

b

a

)√
bTN ln

N

b

)
(15b)

≤
N∑
k=1

µkd
I
k(T )− max

J∈C(N ,a)

∑
j∈J

µjd
I
j (T ) + 2

√(
1 + (e− 2)

b

a

)√
bN ln

N

b
/T (15c)

where C(N , a) = {S ⊆ N : |S| = a}, namely, the set of all subsets of size a in N . The second
inequality uses the fact that

Gmax(T ) ≥ max
J∈C(N ,a)

T∑
t=1

∑
j∈J

µjyj(t) = max
J∈C(N ,a)

∑
j∈J

µjc
I
j (T ).

Therefore, by limiting T to infinity, we have

r̄∞ ≤ lim inf
T→∞

E

 N∑
k=1

µkd
I
k(T )− max

J∈C(N ,a)

∑
j∈J

µjd
I
j (T )

 (16)

for any policy π.
Consider the following optimization problem

maximize
d∈∆N

N∑
k=1

µkdk − max
J∈C(N ,a)

∑
j∈J

µjdj , (17)

where ∆N is the set of distributions over N and d = (dk, k ∈ N ). Let the optimal solution and its
objective function value be d∗ and rmax, respectively. Then we have

r̄∞ ≤ rmax =
N∑
k=1

µkd
∗
k − max

J∈C(N ,a)

∑
j∈J

µjd
∗
j . (18)

Without loss of generality, we assume that supp(d∗) = {1, 2, ...,K∗}. Therefore, according to

Lemma 7.2, we have d∗k = 1/µk∑K∗
j=1 1/µj

for all k ≤ K∗. Then the optimal value of problem (17) is

given by (K∗ − a)/
∑K∗

j=1 1/µj , which is increasing with respect to the value of K∗ = 1, 2, ..., N .
This gives the upper bound of r̄∞.

When the defender adopts Exp3M-VP algorithm, we have

E[GIExp3(T )] ≥ G′max(T ) − o(T ). (19)

where GIExp3(T ) is the total reward of the attacker when adopting Exp3 algorithm, and G′max(T ) =

max
k∈N

∑T
t=1 xk(t) is the maximum total reward the attacker can gain when selecting a fixed location

to attack.
Similarly, define hJk (T ) = |{t ≤ T : k ∈ Jt}| and lJk (T ) = hJk (T )/T . Then, we have

12



(a) Exp3.M-VP regret (blue curve) and expected upper bound
of regret (orange curve). (b) Normalized weights of 10 arms over 20,000 time steps.

Figure 1: Simulation of Exp3.M-VP on a ten-armed bandit problem.

G′max(T ) = max
k∈N

µk(T − hJk (T )). (20)

Thus, the average reward r̄∞ of the attacker over infinite time horizon is lower bounded by

r̄∞ ≥ lim inf
T→∞

E

{
max
k∈N

µk(1− lJk (T ))

}
. (21)

Consider the following optimization problem

minimize
c∈∆N

max
k∈N

µk(1− lk), (22)

and denote the optimal value of problem (22) as rmin. Then according to Lemma 7.3, rmin =
K∗−b∑K∗
k=1 µk

, which gives us the lower bound of r̄∞.

�

8. Numerical Analysis

We conducted extensive simulations illustrating the performance of the proposed algorithm and
policy. Our numerical analysis consists of three parts. In section 8.1, we conduct simulations
to test the Exp3.M-VP performance under a single-player setting. In section 8.2, we compare the
performance of Exp3.M-VP with several bandit learning algorithms, i.e. the Exp3 algorithm, upper-
confidence Bound (UCB) algorithm [35], and ε-greedy algorithm [36], on real in-vehicle network
datasets from the Car-Hacking datasets [37]. In section 8.3, we conduct simulations on the proposed
game model and algorithmic solutions.

8.1. Simulations on a Single Player

In this section we consider the single-player setting, where the Exp3.M-VP algorithm was eval-
uated on a ten-armed bandit problem with rewards for arms drawn independently from Bernoulli
distributions with means {0.75, ..., 3

4k , ..., 0.075}, with k = 1, 2, ..., 10. The scenario was simulated
over a fixed time horizon T = 20, 000 time steps. The number of arms played at each time step
is drawn independently from a discrete uniform distribution over {1, 2, 3}. Parameter γ was set to
0.1.

13



Figure 1a shows the regret of Exp3.M-VP versus the expected upper bound of the regret from
Theorem 5.1. We can see that the actual regret of Exp3.M-VP has a smaller rate than the expected
regret upper bound and the discrepancy becomes larger as time increases. Figure 1b shows the
change of the normalized weight for each location over the entire time horizon. As shown in the
figure, Exp3.M-VP chooses the top three locations (i.e. the blue, orange, and green curves) with the
highest average reward only after a short period of time, and the rest of weights vanish to nearly 0.
The reason why only three locations pop up is that Mt, i.e. the number of the arms played at each
time, is within the set {1, 2, 3}. The fluctuations of the weights is partly due to the fact that the
Exp3.M-VP algorithm needs to explore different locations in order to update the choice prediction
and estimation, and partly due to the fact that the sum of the weights must always equal to Mt,
which is changing over time.

8.2. Evaluations on Car-Hacking Dataset for the Defender

In this section we compare Exp3.M-VP with Exp3, UCB, and the ε-greedy algorithms by im-
plementing these algorithms over two in-vehicle network datasets from the Car-Hacking datasets.
The Car-Hacking datasets are generated by logging the Controller Area Network (CAN) traffic via
the OBD-II port from a real vehicle while message injection attacks were made. The Datasets each
contain 300 intrusions of message injections over 26 unique CAN IDs. Each intrusion is performed
for 3 to 5 seconds, and each dataset has a total of 30 to 40 minutes of the CAN traffic. Specifically,
we test the performance on the spoofing attack datasets, which were conducted on the RPM gauze
and the driving gear. That is, among 26 arms representing CAN IDs, two of them (RPM gauze
and driving gear) contained spoofing attacks.

Figure 2: Cumulative average rewards for ε-greedy, UCB, Exp3, and Exp3.M-VP.

Figure 2 shows the cumulative average rewards for each bandit learning algorithm used by the
defender. The experiments were conducted over T = 7, 000 time steps, and the number of arms
played by Exp3.M-VP was sampled from a truncated Gaussian distribution within the interval
[1,3], with mean 2 and standard deviation 0.8. We can see that all four algorithms are able to
identify the most-likely compromised CAN ID after few iterations and consistently search it over
time. Besides, since Exp3.M-VP is able to search multiple arms at a time, it eventually identify
the top two most rewarded CAN-IDs (i.e. RPM gauze and driving gear) and obtains the highest
average among the four algorithms.
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8.3. Simulations on Two Players

We now consider a game setting where two players, i.e. an attacker and a defender, are playing
the evasion-and-pursuit game against each other. This corresponds to the realistic scenario where a
malicious hacker is trying to compromise either the sensor/ECU in an in-vehicle sensor network, or
the entire vehicle/infrastructure in an interconnected transportation system without being identified
by the intrusion monitoring system. At the same time, the intrusion monitoring system is trying
to identify as many compromised locations as possible to minimize the potential loss. We consider
a ten-armed bandit problem for the two players, where the attacker adopts Exp3 and the defender
adopts Exp3.M-VP. The scenario was simulated over T = 100, 000 time steps, and the number of
arms played by the defender was sampled from a truncated Gaussian distribution within the interval
[1, 3], with mean 2 and standard deviation 0.8. The parameter η for both Exp3 and Exp3.M-VP
was set according to Corollary 5.1.1.

Figure 3: Average reward of the attacker and the defender over 100,000 time steps.

Figure 3 illustrates the average reward and the equilibrium reward for the two players. Since
we have N = 10 and ν = 2, according to Corollaries 5.1.2 and 6.1.1, the equilibrium rewards for
the attacker and the defender are 0.8 and 0.2, respectively. We can see that the average rewards of
both players converge to the equilibrium rewards after a relatively short period, and after that the
average rewards stay around the equilibrium reward with small fluctuations. The fluctuations are
due to the fact the Exp3 and Exp3.M-VP use randomized policies and need to occasionally explore
different locations in order to update the choice predictions and estimations.

9. Conclusions

In this paper, we extend the adversarial/non-stochastic MPMAB to the case where the number
of plays can change in time, and proposed the Exp3.M-VP algorithm for obtaining the variable-play
property. This extension is motivated by the uncertainty of resources allocated to the intrusion
monitoring system to scan at each time in an interconnected transportation system. We derive
a sublinear regret bound for Exp3.M-VP, which can be simplified to the existing bounds in the
literature when the number of arms played at each time is constant. We introduce a game setting
where an attacker and a defender play evasion-and-pursuit game against each other. The defender
who represents the intrusion monitoring system adopts Exp3.M-VP and the attacker who represents
the malicious hacker adopts Exp3. We derive the condition under which a Nash equilibrium of the
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strategic game exists. Finally, we consider the heterogeneous rewards, which is location-dependent,
and obtain lower and upper bounds on the average rewards for the attacker in an infinite time
horizon. We provide several numerical experiments that demonstrate our results.

This work provides several intuitions when we deploy a intrusion monitoring system either in an
in-vehicle network or transportation network: In order to minimize the potential loss of the system
from cyber threats, one can either increase the average resource allocated to intrusion monitoring,
or change the potential reward vector for each location in a way such that reducing the reward
bound in Theorem 7.1. One of the potential extensions of this work is to consider the connectivities
or correlations between different arms, which can take into account the spread of the cyber attacks,
and use such information to facilitate the decision making of the intrusion monitoring system.
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Appendices

A. Hedge and Exp3 Algorithms

Algorithm 2 Hedge

1: Parameters: ι ∈ R+.
2: Initialization: Set rk(1) := 0 for all k ∈ N .
3: for t = 1,2,...,T do
4: Choose action It according to the distribution

βk =
(1 + ι)rk(t)∑N
j=1(1 + ι)rj(t)

.

5: Receive the reward vector x(t) and score gain xIt(t).
6: Set rk(t+ 1) := rk(t) + xk(t) for all k ∈ N .
7: end for
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Algorithm 3 Exp3

1: Parameters: ι ∈ R+ and η ∈ [0, 1].
2: Initialization: Initialize Hedge.
3: for t = 1,2,...,T do
4: Obtain the distribution vector β(t) = (βk(t), k ∈ N ) from Hedge.
5: Select action It to be k with probability

β̂k(t) = (1− η)βk(t) + η/N.

6: Receive the reward xIt(t) ∈ [0, 1].
7: Return the simulated reward vector x̂(t) = (x̂k(t), k ∈ N ) to Hedge with

x̂k(t) =

{
η
N ×

xIt (t)

β̂It (t)
if k = It

0 otherwise.

8: end for

B. DepRound Algorithm

Algorithm 4 DepRound: The Dependent Rounding Algorithm

1: Inputs: Natural number M < N , marginal distribution (pk, k ∈ N ) with
∑N
k=1 pk = M

2: Output: Subset N1 of N such that |N1| = M
3: while {k ∈ N : 0 < pk < 1} 6= ∅ do
4: Choose distinct i and j such that 0 < pi < 1 and 0 < pj < 1
5: Set ρ = min{1− pi, pj} and ζ = min{pi, 1− pj}
6: Update pi and pj as

(pi, pj) =

{
(pi + ρ, pj − ρ) with probability ζ

ρ+ζ

(pi − ζ, pj + ζ) with probability ρ
ρ+ζ

7: end while
8: return {k : pk = 1, 1 ≤ k ≤ N}

C. Proof of Theorem 5.1

Proof. Let Wt :=
∑N

k=1wk(t) and W ′t :=
∑N

k=1w
′
k(t). Then, at each time step t,
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Wt+1

Wt
=

∑
i∈Sc

0(t)

wi(t+ 1)

Wt
+
∑

i∈S0(t)

wi(t+ 1)

Wt
(23a)

=
∑

i∈Sc
0(t)

wi(t)

Wt
exp

(
ηMt

N
ŷi(t)

)
+
∑

i∈S0(t)

wi(t)

Wt
(23b)

≤
∑

i∈Sc
0(t)

wi(t)

Wt

[
1 +

ηMt

N
ŷi(t) + (e− 2)

(
ηMt

N
ŷi(t)

)2
]

+
∑

i∈S0(t)

wi(t)

Wt
(23c)

= 1 +
W ′t
Wt

∑
i∈Sc

0(t)

wi(t)

W ′t

[
ηMt

N
ŷi(t) + (e− 2)

(
ηMt

N
ŷi(t)

)2
]

(23d)

= 1 +
W ′t
Wt

∑
i∈Sc

0(t)

α̂i(t)
Mt
− η

N

1− η

[
ηMt

N
ŷi(t) + (e− 2)

(
ηMt

N
ŷi(t)

)2
]

(23e)

≤ 1 +
η

(1− η)N

∑
i∈Sc

0(t)

α̂i(t)ŷi(t) +
(e− 2)Mtη

2

(1− η)N2

∑
i∈Sc

0(t)

α̂i(t)ŷ
2
i (t) (23f)

≤ 1 +
η

(1− η)N

∑
i∈Jt∩Sc

0(t)

yi(t) +
(e− 2)Mtη

2

(1− η)N2

∑
i∈N

ŷi(t). (23g)

Inequality (23c) uses ea ≤ 1 + a + a2, ∀a ∈ [0, 1], equality (23e) holds because of the step 11 in

Algorithm 1, inequality (23f) uses the fact that
W ′t
Wt
≤ 1, and the last inequality (23g) holds because

α̂i(t)ŷi(t) = yi(t) ≤ 1 for i ∈ Jt and α̂i(t)ŷi(t) = 0 for i /∈ Jt. Then, according to inequality (23g)
and by summing over t, we have

ln
WT+1

W1
=

T∑
t=1

ln
Wt+1

Wt
(24a)

≤
T∑
t=1

ln

1 +
η

(1− η)N

∑
i∈Jt∩Sc

0(t)

yi(t) +
(e− 2)Mtη

2

(1− η)N2

∑
i∈N

ŷi(t)

 (24b)

≤ η

(1− η)N

T∑
t=1

∑
i∈Jt∩Sc

0(t)

yi(t) +
(e− 2)bη2

(1− η)N2

T∑
t=1

∑
i∈N

ŷi(t). (24c)

where inequality (24c) holds because 1 + y ≤ ey and Mt ≤ b.
On the other hand, define A∗b as the best location index subset with b elements. Then,

ln
WT+1

W1
≥ ln

∑
j∈A∗b

wj(T + 1)

W1
(25a)

≥
∑

j∈A∗b
lnwj(T + 1)

b
− ln

N

b
(25b)

≥ η

N

∑
j∈A∗b

∑
t:j∈Sc

0(t)

ŷj(t)− ln
N

b
. (25c)
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where inequality (25a) holds because A∗b ⊆ N , inequality (25b) comes from the inequality of

arithmetic and geometric means, i.e. 1
b

∑b
j=1 yj ≥

(∏b
j=1 yj

) 1
b
, and inequality (25c) is obtained by

recursively applying step 15 of Algorithm 1, which results in equality (26):

wj(T + 1) = exp

(bη/N)
∑

t:j∈Sc
0(t)

ŷj(t)

 . (26)

Note that we also have

∑
j∈A∗b

∑
t:j∈S0(t)

ŷj(t) ≤
T∑
t=1

∑
i∈S0(t)

yj(t) (27a)

≤ 1

1− η

T∑
t=1

∑
i∈S0(t)

yj(t) (27b)

where inequality (27a) is due to the fact that ŷj(t) = yj(t), ∀j ∈ S0(t), and the last inequality (27b)
holds because η ∈ (0, 1].

Combining (24c), (25c), (27a), and (27b), we have:

∑
j∈A∗b

∑
t:j∈Sc

0(t)

ŷj(t) +
∑
j∈A∗b

∑
t:j∈S0(t)

ŷj(t)−
N

η
ln
N

b
(28a)

≤ 1

(1− η)
GJExp3.M-VP(T ) +

(e− 2)ηb

(1− η)N

T∑
t=1

∑
i∈N

ŷi(t) (28b)

Taking expectations of both sides of inequality (28), we obtain

∑
j∈A∗b

∑
t:j∈Sc

0(t)

ŷj(t) +
∑
j∈A∗b

∑
t:j∈S0(t)

ŷj(t)−
N

η
ln
N

b
(29a)

≤ 1

(1− η)
E
[
GJExp3.M-VP(T )

]
+

(e− 2)ηb

(1− η)N

T∑
t=1

∑
i∈N

yi(t) (29b)

≤ 1

(1− η)
E
[
GJExp3.M-VP(T )

]
+

(e− 2)ηb

(1− η)a
Gmax(T ), (29c)

where inequality (29b) uses the fact that E[ŷi(t)|S(1), ..., S(t− 1)] = yi(t), and

T∑
t=1

∑
i∈N

yi(t) ≤
N

a
Gmax(T ). (30)

Since A∗b = ∪MtA
∗
Mt

trivially holds, we have

Gmax(T )− N

η
ln
N

b
≤
∑
j∈A∗b

∑
t:j∈Sc

0(t)

ŷj(t) +
∑
j∈A∗b

∑
t:j∈S0(t)

ŷj(t)−
N

η
ln
N

b
(31)

Therefore, by combining (29) and (31), we obtain the inequality stated in the Theorem 5.1. �
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D. Proof of Theorem 6.1

Proof. Note that

r̄∞ = 1− lim inf
T→∞

E

[
1

T
GJExp3.M-VP(T )

]
(32a)

≤ 1− lim inf
T→∞

1

T

(
Gmax(T )− 2

√(
1 + (e− 2)

b

a

)√
bTN ln

N

b

)
(32b)

= 1− lim inf
T→∞

1

T
Gmax(T ) (32c)

≤ N − a
N

(32d)

for any policy π of the attacker, where the last inequality (32d) comes from the fact that Gmax(T ) ≥
Ta
N for any defender’s policy γ.

Under the greedy policy we have β̂g(t)(t) ≤ b
N , which implies r(t) ≥ N−b

N for any t. Therefore

by using greedy policy πgreedy, we have r̄∞ ≥ N−b
N .

�

E. Proof of Lemma 7.2

The proof of Lemma 7.2 is an extension of the proof of Lemma 4 in [34]. The main difference
is that the matrix H is now a N × |C(N , a)| matrix compared the one in the original proof.

Proof. 1) The problem (17) is equivalent to

max
d∈∆N

min
u∈∆N

|C(N ,a)|∑
n=1

N∑
k=1

µkdk −∑
j∈Jn

µjdj

un (33)

which can be rewritten into the matrix form:

max
d∈∆N

min
u∈∆N

dTHu, (34)

where T denote the transpose, and

H =



0, µ1, ... µ1

...
0, µa, ... µa

µa+1, ... µa+1

...
µN−a+1, ... 0

...
µN , ... 0


where each column j represents one set S ∈ C(N , a) such that for all i ∈ S, Hij = 0. The remaining
proof is the same as the original proof.

Now consider a zero-sum game with the payoff matrices for the row and the column players
being H and −H, whose mixed strategies vector are d and u, respectively. Any optimal solution
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d∗ to the problem (17) is a Nash equilibrium strategy for the row player, and by the indifference
condition, we obtain for any j ∈ supp(d∗),∑

k 6=j
k ∈ supp(d∗) = Const., (35)

which implies µkd
∗
k = µjd

∗
j for any k, j ∈ supp(d∗).

2) The second part of the Lemma is proved by contradiction. Assume that there exist i ∈
supp(d∗) and j ∈ N \supp(d∗) such that µj > µi. Let o be a constant such that o = µkd

∗
k for any k ∈

supp(d∗). Then consider a feasible solution d, where dk = 0 for all k ∈ ((N \ supp(d∗)) \ {j})∪{i},
and dk = d∗k + ε for all k ∈ (supp(d∗) \ {i})∪{j}, with ε = d∗i (1−µi/µj)/K∗, which yields a higher
objective value.

�

F. Proof of Lemma 7.3

Proof. Consider the following linear program:

minimize
l,p

p (36a)

s.t. p+ µklk ≤ µk, (36b)∑
k

lk ≤ b, (36c)

lk ≤ 1, (36d)

lk ≥ 0. (36e)

It is easy to see that problem (22) is lower bounded by the problem (36).
Then the dual of the program (36) can be written as

maximize
d,q

N∑
k=1

µkdk − q (37a)

s.t.

N∑
k=1

µkdk ≤
Nq

b
, (37b)

N∑
k=1

dk = 1, (37c)

dk ≥ 0. (37d)

Note that program (37) is equivalent to the following problem

maximize
d∈∆N

N∑
k=1

µkdk − max
J∈C(N ,b)

∑
j∈J

µjdj , (38)

which is essentially the problem (17) only changing the set C(N , a) to C(N , b). Therefore problem
(38) has the optimal value K∗−b∑K∗

k=1 µk
, which gives us the lower bound. �
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